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S1 Methods

Calculation of FST

Wright’s FST is the proportion of total population variation that occurs between sub-populations

rather than within. In our models we have a population divided into s equally-sized sub-populations

and s different traits. To calculate FST we first calculate the total variance, i.e. the probability

that two randomly chosen individuals from the entire population have the same trait, ignoring

sub-population structure. If Xi,j is the frequency of trait i in sub-population j, and X̄i is the mean

frequency of trait i across all sub-populations, then the total variance, vartotal, is given by

vartotal = 1−
i=s∑
i=1

X̄i
2

We then calculate the within-group variance for each sub-population, i.e. the probability that two

randomly chosen individuals from that sub-population have the same trait. If varj is the variance in

sub-population j, given by

varj = 1−
i=s∑
i=1

X2
i,j

then the overall within-population variance, varwithin, is the mean of these variances:

varwithin =
∑j=s

j=1 varj

s

FST is then given by

FST = vartotal − varwithin

vartotal
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Conformity for more than two traits and more than three demonstrators

Boyd and Richerson [1] provide a model for the change in trait frequency under the assumption

of conformist transmission, such that traits that are more frequent are more likely to be adopted

relative to unbiased transmission. Their basic model (on p.208) assumes two traits (c and d) and

three demonstrators (they call these ‘models’ but this is confusing, so I use ‘demonstrators’). They

use the binomial theorem to calculate the probability that different sets of three demonstrators will

meet at random and pass on their traits. A parameter D, equivalent to a in the current models

so henceforth labelled a, specifies the increased probability of adopting the majority trait (held by

2/3 of the demonstrators) and decreased probability of adopting the minority trait (held by 1/3 of

the demonstrators), when demonstrators possessed different traits. When a = 1 there is maximum

conformity, when a = 0 there is no conformity and transmission is unbiased. For two traits and

three demonstrators, the frequency p′ of a trait after conformity is given by

p′ = p+ ap(1− p)(2p− 1) (S1)

where p is the frequency of the trait before conformity. This however only applies when there are

three randomly chosen demonstrators and two traits. The effect of increasing a can be seen in S2

Fig. Increasing a from 0.5 to 1 increases the speed with which the initially more common trait goes

to fixation.
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S2 Fig: The effect of conformity on trait frequencies, for two traits and three

demonstrators. The trait that is initially more common (initial frequency = 0.51)

than the other trait (initial frequency = 0.49) goes to fixation. This occurs faster

when the strength of conformity, a, is larger.

Boyd and Richerson [1] extended their model to include more than three demonstrators, but their

formulation (p.213) failed to specify a conformity function. Efferson et al. [2] provided a clearer

model of conformity with more than three demonstrators, also using the binomial theorem, showing

that the effect of conformity increases with the number of demonstrators. However they did not

extend to more than two traits. Nakahashi et al. [3] devised a model extending conformity to

more than two traits, but used a different formulation to the binomial model. Their model used

a parameter also labelled a: when their a = 1 there is no conformity, when their a > 1 there is

conformity, and when their a = ∞ there is maximum conformity. However, this model has an

unclear individual level interpretation. Boyd and Richerson’s [1] conformity parameter has a clear

meaning: when their parameter equals 1, then individuals faced with majority and minority traits

always pick the majority trait. It is unclear, however, what Nakahashi et al’s [3] a =∞ means in

this context, particularly when one wants to generate empirically testable predictions regarding

acculturation strengths and compare to an individual-based model.

4



Here I use multinomial theorem to extend Boyd and Richerson’s [1] model to more than three

demonstrators and more than two traits, and with an interpretable conformity parameter.

If pi is the frequency of a trait in the population, then to obtain the frequency of that trait in the

next generation, p′i, after conformist transmission with n randomly forming demonstrators and s

traits, we can use the multinomial theorem:

p′i =
∑

k1,k2,...ks=n

(
n

k1, k2, ...ks

)
s∏

j=1
(pkj

j ) ·Xi (S2)

where k1, k2...ks represent all combinations of s non-negative integers such that the sum of all k

values is n. For example, when s = 2 and n = 3, then there are two k values, k1 and k2, and four

combinations of k1 and k2 that sum to n = 3: k1 = 3 and k2 = 0; k1 = 2 and k2 = 1; k1 = 1 and

k2 = 2; and k1 = 0 and k2 = 3. At the moment we assume that demonstrator formation is random.

Xi specifies the probability of adoption of trait i for that set of k values, and incorporates the

conformity parameter a. If kmax is the maximum k in a combination, and π is the number of traits

that have k = kmax (so when π = 1 there is a single most-common trait, and when π > 1 there are

more than one joint-most-common traits), then:

Xi =


ki/n+ a(1/π − ki/n) if ki = kmax

ki/n− aki/n if ki 6= kmax

(S3)

To see how these equations work, S2 Table shows how to calculate the frequency p′1 of trait i = 1

following conformity given two traits, 1 and 2 (s = 2) and three demonstrators (n = 3). The

first three columns ‘Dem 1-3’ contain all possible combinations of traits 1 and 2 among the three

demonstrators. k1 and k2 are the number of copies of trait 1 and 2 respectively in that row’s

demonstrators. ‘Coef’ contains the number of each combination of demonstrator traits ignoring

order, and is the multinomial coefficient. The column P (forming) gives the probability of that

combination of demonstrators forming. This is given by the standard multinomial expression, i.e. the

product of each trait frequency (p and 1 − p, given that there are only two traits) raised to the

powers k1 and k2 respectively.
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S2 Table: Example frequency table for calculating the frequency p′1 of trait 1 following

conformity given two traits, 1 and 2 (s = 2) and three demonstrators (n = 3) See text

for details. Dem=demonstrator, Coef=Coefficient, P(forming)=probability of that demonstrator

combination forming randomly, P(adopt 1)=probability of adopting trait 1

Dem

1

Dem

2

Dem

3 k1 k2 Coef P (forming)

P (adopt 1) =

X1

Coef ∗ P (forming) ∗

P (adopt 1)

1 1 1 3 0 1 p3 1 p3

1 1 2

1 2 1 2 1 3 p2(1− p) 2/3 + a/3 3p2(1− p)(2/3 + a/3)

2 1 1

1 2 2

2 1 2 1 2 3 p(1− p)2 1/3− a/3 3p(1− p)2(1/3− a/3)

2 2 1

2 2 2 0 3 1 (1− p)3 0 0

P (adopt 1) gives the probability of that row’s demonstrator trait combination resulting in the

observer adopting trait 1, incorporating the conformity parameter a. This is Xi in Equation S2

and is given in Equation S3. In the first row/combination, k1 = 3 = kmax = n and π = 1, so

Xi = k1/n+a(1/π−ki/n) = 1+0 = 1. For the next three demonstrator combinations, k1 = 2 = kmax

and π = 1, so Xi = ki/n+ a(1/π − ki/n) = 2/3 + a(1− 2/3) = 2/3 + a/3. And so on for the other

demonstrator combinations. The final column contains the product of the coefficient, P (forming)

and P (adopt 1). The sum of this final column gives the frequency of trait 1 in the next generation,

p′1:

6



p′i = p3 + 3p2(1− p)(2/3 + a/3) + 3p(1− p)2(1/3− a/3) (S4)

which reduces to Equation S1 because s = 2 and n = 3, as in Boyd and Richerson’s [1] original

formulation. When s > 2 or n > 3 the resulting recursion will not reduce to Equation S1, but is

derived in the same way from Equation S2. In the case of s = 2, then the updated frequency of the

other trait will equal 1− p′; when s > 2 then s− 1 traits need to be calculated using Equation S2.

Note that some combinations of n > 3 demonstrators will have more than one maximum k, e.g. for

the trait combination {1,1,2,2,3} then k1 = 2, k2 = 2 and k3 = 1, so k1 and k2 are both kmax. In

such cases Equation S3 also applies, to increase the frequency of both most-common traits equally

by the amount that the minority traits are decreased.

S3 Fig shows the effect of increasing the number of demonstrators (n > 3) and adding more than two

traits (s > 2) to the change in trait frequencies over time, with no assortation (r = 0). Increasing

n increases the speed with which majority traits go to fixation. Increasing s causes the initially

most-common trait to go to fixation, and all other traits to be eliminated.

S3 Fig: The effect of conformity on trait frequencies, for more than three demonstra-

tors (left) and more than two traits (right). Increasing the number of demonstrators

increases the strength of conformity (compare with S2 Fig, left panel). For more
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than two traits, whichever trait is initially most frequent goes to fixation, even if this

frequency is initially less than 0.5 (here initial trait frequencies were 0.3, 0.25, 0.2,

0.15, 0.08, and 0.02). Other parameters: r=0

S4 Fig shows the probability of adopting a trait given different frequencies of that trait in the

population, which have become defining images of conformity in the cultural evolution literature.

I show only the case of s = 2 for ease of interpretation. The left panel shows that a non-zero

conformity parameter a generates S-curves, such that when the trait is common (its frequency is

greater than 0.5) then the probability of adoption is exaggerated, and when the trait is uncommon

(less than 0.5) then the probability of adoption is decreased, relative to the dotted line which shows

unbiased, non-conformist transmission. Larger values of a generate stronger conformity curves. The

right panel shows that increasing n also increases the strength of conformity, keeping a constant.

S4 Fig: How conformity affects trait adoption. The y-axis shows the probability

of adopting a trait as a function of that trait’s frequency in the population. Here

we assume only two traits (s=2). The dotted line shows unbiased, non-conformist

transmission: the probability of adoption is exactly equal to the frequency in the

population. The left panel shows different values of a for constant n (n=15). The

right panel shows different values of n for constant a (a=1). Other parameters: r=0.
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We now add non-random formation of demonstrators, or assortation. Boyd and Richerson [1]

also implemented assortation, but they restricted its effect to a correlation r between two of

three demonstrators. Here I wish to add a general assortation effect across all n demonstrators,

where n ≥ 3. The simplest case would be where a fraction 1 − r of demonstrator combinations

form randomly as specified in Equation S2, and a fraction r form culturally homogenous sets of

demonstrators who all possess the same cultural trait. In S2 Table, this would be the first row (all

demonstrators have trait 1) and last row (all demonstrators have trait 2). If we are interested in how

pi changes, then only one of these combinations will result in a change in pi (the one where ki = n)

due to the Xi term. Assuming learners must possess the same trait pi as the homogenous set of

demonstrators, then a fraction pi of individuals will learn from homogenous sets. Homogeneous sets

always produce the same trait (again due to the Xi term), and so result in the same frequency of pi

as before transmission. In Equation S5, this is reflected in the rpi term:

p′i = (1− r)
[ ∑

k1,k2,...ks=n

(
n

k1, k2, ...ks

)
s∏

j=1
(pkj

j ) ·Xi

]
+ rpi (S5)

It is clear from Equation S5 that as r increases, the effect of conformity via Xi becomes weaker.
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Model 2 fitness plots and assumptions

The fitness functions given in the main text are a specific cooperation version of the general fitness

functions for coordination games provided in Boyd & Richerson [4]. S4 Fig plots the fitness of

cooperators (wc, blue line) and defectors (wd, red line) at different frequencies of cooperators, p,

equivalent to Fig 1 in [4]. The lines cross at p∗, as given by Equation 4 in the main text. This

point p∗, where the fitness of cooperators and defectors is equal, is an unstable equilibrium for

payoff-biased within-group social learning (as determined by L). To ensure that fitnesses are always

positive, I assume that b > c, b > v and c+ u < 1.

S5 Fig: Fitnesses of cooperators (wc, blue line) and defectors (wd, red line) at different

frequencies of cooperators, p. Annotations show how fitness parameters affect these

functions, and p* indicates where the lines cross.

The fitness parameter values were chosen in S5 Fig so that p∗ = 0.5 and the basin of attraction

within which cooperators have higher fitness than defectors (wc > wd or p > p∗) and the basin of

attraction within which defectors have higher fitness than cooperators (wd > wc or p < p∗) are

equal. Other fitness parameter values give different values of p∗ and alter the relative sizes of these

basins of attraction. The easiest way of doing this is varying v, the punishment cost borne by

defectors. S6 Fig shows fitness plots for three different values of v, in the centre with equal basins

of attraction (as in S5 Fig), on the right where cooperators have a larger basin of attraction, and on

the left where defectors have a larger basin of attraction. This has consequences for the action of

payoff-biased within-group social learning (L) by changing the unstable equilibrium point.
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S6 Fig: Fitnesses plots for three different values of v, which determines the cost

of being punished for defectors. When v is large, cooperators have a larger basin

of attraction. When v is small, defectors have a larger basin of attraction. Other

parameters: b=1, c=0.2, u=0.1.

Equation S6 gives the mean population fitness W . S7 Fig plots this quadratic function of p.

W = pwc + (1− p)wd = (u+ v)p2 + (b− v − c− u)p (S6)

To keep the model simple I assume that W is always greater than 1, in other words, a population

entirely composed of defectors (p = 0) always has lower fitness than any population containing

any cooperators (p > 0). In terms of S7 Fig, this would mean that the green W line never drops

below W = 1. To ensure this, I assume that (b − c) > (u + v). Finally, the parameter µ in

Equation 5 ensures that the weighted migration rate m(W − 1) never exceeds the baseline migration

rate m. This is done by setting µ to be the reciprocal of the maximum value of W − 1 which

occurs at p = 1, so µ = 1/(b− c). Similarly, γ in Equation 6 ensures that the change in p due to

payoff-biased social learning always scales from 0 to L. From S5 Fig, the maximum absolute fitness

difference between cooperators and defectors (wc − wd) is either v − c or c+ u, whichever is larger,

so γ = 1/[max(v − c, c+ u)].
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S7 Fig: Mean sub-population fitness W as a function of p, as given by Equation S5.

Parameters: b=1, c=0.2, u=0.1, v=0.5.
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